
pyLabLib Documentation
Release 0.4.1

Alexey Shkarin

May 29, 2021

Contents:

1 Installation 3
1.1 Usage . 3
1.2 Requirements . 3
1.3 Installing from GitHub . 4

2 Data processing utilities 5
2.1 Fitting . 5

3 Utilities 7
3.1 Multi-level dictionary . 7

4 Specific device classes 9
4.1 General concepts . 9
4.2 Examples . 9
4.3 List of devices . 10
4.4 Additional requirements . 11

5 Change log 13
5.1 0.4.2 . 13
5.2 0.4.1 . 13
5.3 0.4.0 . 14

6 Indices and tables 17

i

ii

pyLabLib Documentation, Release 0.4.1

Note: This is the last 0.x version of the library. The new library (1.x) is located at https://github.com/AlexShkarin/
pyLabLib/, and its documentation can be found at https://pylablib.readthedocs.io/. It has large changes in the interface
and code organization, rendering almost all previous code partially incompatible (see the new documentation for
details).

Contents: 1

https://github.com/AlexShkarin/pyLabLib/
https://github.com/AlexShkarin/pyLabLib/
https://pylablib.readthedocs.io/
https://pylablib.readthedocs.io/en/latest/changelog.html#version-1-x/

pyLabLib Documentation, Release 0.4.1

2 Contents:

CHAPTER 1

Installation

You can install the old version of the library (0.4.2) described here using pip:

pip install "pylablib<1"

This will install only the minimal subset of dependencies. To add packages needed for device communication, you
can specify devio extra (on non-Windows systems use devio-basic, as some of the packages are not available
there). To add packages needed for GUI, you can specify gui extra (note that one of the required packages is PyQt5,
which is not available on pip for Python 2.7; hence, it needs to be installed prior to installing pyLabLib). To grab full
set of required packages, call:

pip install "pylablib[devio,gui]<1"

Note: It is recommended tp can install the new version and, if you need it, use the legacy code package there.

1.1 Usage

To access to the most common functions simply import the library:

import pylablib as pll
data = pll.load("data.csv","csv")

1.2 Requirements

The package requires numpy, scipy, matplotlib, pandas and numba modules for computations. Note that when installed
directly from pip, numpy comes with the OpenBLAS version of the linear algebra library; if other version (e.g., Intel
MKL) is preferred, it is a good idea to numpy already installed before installing pyLabLib. All other packages can
be safely installed from pip.

3

https://pylablib.readthedocs.io/
https://pylablib.readthedocs.io/en/latest/changelog.html#version-1-x
http://docs.scipy.org/doc/numpy/
http://docs.scipy.org/doc/scipy/reference/
http://matplotlib.org/
https://pandas.pydata.org/
http://numba.pydata.org/

pyLabLib Documentation, Release 0.4.1

PyVISA and pySerial are the main packages used for the device communication. For some specific devices you
might require pyft232, pywinusb, websocket-client, or nidaqmx (keep in mind that it’s different from
the PyDAQmx package). Some devices have additional requirements (devices software or drivers installed, or some
particular dlls), which are specified in their description.

The package has been tested with Python 3.6 and Python 3.7. Python 2.7 might not be fully compatible anymore
(although effort is made to preserve the compatibility, testing with Python 2.7 is far less extensive). The last version
officially supporting Python 2.7 is 0.4.0.

1.3 Installing from GitHub

The library is available on GitHub at https://github.com/AlexShkarin/pyLabLib-v0/. To simply get all the source code,
you can download it as a zip-file and unpack it into any appropriate place (can be folder of the project you’re working
on, Python site-packages folder, or any folder added to Python path variable).

Keep in mind that required packages will not be automatically installed, so this has to be done manually:

pip install future numpy scipy matplotlib pandas numba rpyc
pip install pyft232 pyvisa pyserial nidaqmx pywinusb websocket-client
pip install pyqt5 sip pyqtgraph

4 Chapter 1. Installation

https://pyvisa.readthedocs.io/en/master/
https://pythonhosted.org/pyserial/
https://nidaqmx-python.readthedocs.io/en/latest/
https://github.com/AlexShkarin/pyLabLib-v0/

CHAPTER 2

Data processing utilities

2.1 Fitting

Class fitting.Fitter is a user-friendly wrapper around scipy.optimize.least_squares() routine.
Dealing with fitting is made more convenient in a couple of ways:

• it is easy to specify the x-parameter name (in the case it is not the first parameter), or specify multiple x-
parameters;

• all of the fit and fixed parameters are specified by name; it is easy to switch between any parameter being fit or
fixed;

• the wrapper automatically handles complex parameters (split into real and imaginary parts), numpy arrays, lists,
ot tuples (including nested structures);

• the final parameters (fit and fixed) are returned in a single dictionary indexed by their names;

• the wrapper also returns the fit function with all of the parameters bound to the final fit and fixed values;

• the fit function result is flattened during fitting, so it, for example, works for functions returning 2D arrays.

Examples

Fitting a Lorentzian:

def lorentzian(frequency, position=0., width=1., height=1.):
return height/(1.+4.*(frequency-position)**2/width**2)

creating the fitter
fit_parameters dictionary specifies the initial guess
fit_par = {"position":0.5, "height":1.}
fitter = pll.Fitter(lorentzian, xarg_name="frequency", fit_parameters=fit_par)
additional fit parameter is supplied during the call
fit_par, fit_func = fitter.fit(xdata, ydata, fit_parameters={"width":1.0})
plot(xdata, ydata) # plot the experimental data
plot(xdata, fit_func(xdata)) # plot fit result

5

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares

pyLabLib Documentation, Release 0.4.1

Fitting a sum of complex Lorentzians with the same width:

def lorentzian_sum(frequency, positions, width, amplitudes):
list of complex lorentzians
positions and amplitudes are lists, one per peak
lorentzians = [a/(1.+2j*(frequency-p)/width) for (a,p) in zip (amplitudes,

→˓positions)]
return np.sum(lorentzians, axis=0)

creating the fitter
fit_parameters dictionary specifies the initial guess
(complex initial guess for the "amplitude" parameter hints that this parameter
→˓is complex)
fit_par = {"positions":[0.,0.5,1.], "amplitudes":[1.+0.j]*3}
fitter = pll.Fitter(lorentzian_sum, xarg_name="frequency", fit_parameters=fit_par)
fixed parameter is supplied during the call (could have also been supplied on
→˓Fitter initialization)
fit_par, fit_func = fitter.fit(xdata, ydata, fixed_parameters = {"width":0.3})
plot(xdata, ydata.real) # plot the experimental data
plot(xdata, fit_func(xdata).real) # plot fit result

Fitting 2D Gaussian and getting the parameter estimation errors:

def gaussian(x, y, pos, width, height):
return np.exp(-((x-pos[0])**2+(y-pos[1])**2)/(2*width**2))*height

creating the fitter
fit_parameters dictionary specifies the initial guess
fit_par = {"pos":(100,100), "width":10., "height":5.}
fitter = pll.Fitter(gaussian, xarg_name=["x","y"], fit_parameters=fit_par)
xs, ys = np.meshgrid(np.arange(img.shape[0]), np.arange(img.shape[1]), indexing="ij")
→˓# building x and y coordinates for the image
fit_stderr is a dictionary containing the fit error for the corresponding parameters
fit_par, fit_func, fit_stderr = fitter.fit([xs,ys], img, return_stderr=True)
imshow(fit_func(xs, ys)) # plot fit result

The full module documentation is given at pylablib.core.dataproc.fitting.

6 Chapter 2. Data processing utilities

CHAPTER 3

Utilities

3.1 Multi-level dictionary

dictionary.Dictionary is an expansion of the standard dict class which supports tree structures (nested dic-
tionaries). The extensions include:

• handling multi-level paths and nested dictionaries, with several different indexing methods

• iteration over the immediate branches, or over the whole tree structure

• some additional methods: mapping, filtering, finding difference between two dictionaries

• combined with pylablib.core.fileio allows to save and load the content in a human-readable format.

Creating and indexing:

>>> d = pll.Dictionary()
>>> d['d/0/x'] = 5
>>> d
Dictionary('d/0/x': 5)
>>> d['d/0/x'] # string path indexing
5
>>> d['d']['0']['x'] # nested indexing
5
>>> d['d','0','x'] # multi-level path indexing
5
>>> d['d',0,'x'] # all path elements are converted into strings
5
>>> d['d/0']['x'] # indexing styles can be freely mixed
5
>>> d['d','0/x']
5
>>> b = d['d'] # indexing a branch yields another Dictionary object
>>> b
Dictionary('0/x': 5)
>>> b['0/x'] = 10 # the branch shares the data with the main dictionary

(continues on next page)

7

pyLabLib Documentation, Release 0.4.1

(continued from previous page)

>>> d
Dictionary('d/0/x': 10)

A dictionary can be build from a Python dict, which automatically normalizes paths and nested dictionaries:

>>> d = pll.Dictionary({ 'a':1, 'b/i':2, 'c':{'i':3, 'ii':4}, 'd/0/x':5 })
>>> d
Dictionary('b/i': 2
'c/i': 3
'c/ii': 4
'd/0/x': 5
'a': 1)

Note: There are several limitations on the dictionary structure (mostly they involve possible paths and keys):

• As mentioned above, the keys are converted into strings to get the path; therefore, different Python object can
merge together (e.g., number 0 and string literal '0'). This also discourages use of some of the objects with
“underdefined” (implementation dependent) representations, for example, floating point numbers.

• Since the '/' symbol is used to split different path entries, it can’t be used inside a single-level key. It is
possible to re-define this symbol on dictionary creation; however, it might lead to compatibility issues.

• Using spaces is in principle allowed; however, it leads to problems if the dictionary is saved to or loaded from a
text file using standard methods, since there space is used to separate the path and the value (so a part of the path
after the first space would become a part of the value). The same concerns other whitespace characters ('\n',
'\r', '\t').

• Empty keys are not allowed. When building a path, they are automatically dropped, so 'a/b', 'a/b/',
'a///b//' all correspond to the same path.

• One path can either correspond to a branch node, or a leaf node. In other words, one path can’t be a prefix of other
paths and also contain data: structures like pll.Dictionary({ 'a':1, 'a/b':2}) are not allowed.
To get around this, one can define a specific “data key” not used anywhere else, and store data in a node under
that key (e.g., with the data key '#' the example before turns into a valid structure pll.Dictionary({
'a/#':1, 'a/b/#':2})).

Thus, it is generally recommended to only use strings or non-negative integers as keys, and apply the same restrictions
to them as to the Python variable names (with the addition of names starting with a digit).

8 Chapter 3. Utilities

CHAPTER 4

Specific device classes

4.1 General concepts

Most devices share common methods and approach to make them more predictable and easier to use.

First, the device identifier / address needs to be provided by user during the device object creation, and it is automat-
ically connected. The devices have open and close methods but the device also works as a resource (with Python
with statement), so these usually aren’t used explicitly.

The devices usually have get_settings and apply_settings methods which return Python dictionaries with
the most common settings or take these dictionaries and apply them. In addition, there are get_full_status
and get_full_info functions, which return progressively more information (get_full_status adds variable
status information which cannot be changed by user, and get_full_info adds constant device information, such
as model name and serial number). get_full_info can be particularly useful to check the device status and see if
it is connected and working properly.

Devices of the same kind (e.g., cameras or translation stages) aim to have consistent overlapping interfaces (where it
makes sense), so different devices are fairly interchangeable in simple applications.

4.2 Examples

Connecting to a Cryomagnetics LM500 level meter and reading out the level at the first channel:

from pylablib.aux_libs.devices import Cryomagnetics # import the device library
Next, create the device object and connect to the device;
the connection is automatically opened on creation, and closed when the ``with``
→˓block is ended
with Cryomagnetics.LM500("COM1") as lm:

level = lm.get_level(1) # read the level

Stepping the M Squared laser wavelength and recording an image from the Andor IXON camera at each step:

9

pyLabLib Documentation, Release 0.4.1

from pylablib.aux_libs.devices import M2, Andor # import the device libraries
with M2.M2ICE("192.168.0.1", 39933) as laser, Andor.AndorCamera() as cam: # connect
→˓to the devices

change some camera parameters
cam.set_shutter("open")
cam.set_exposure(50E-3)
cam.set_amp_mode(preamp=2)
cam.set_EMCCD_gain(128)
cam.setup_image_mode(vbin=2, hbin=2)
setup acquisition mode
cam.set_acquisition_mode("cont")
cam.setup_cont_mode()
start camera acquisition
cam.start_acquisition()
wavelength = 740E-9 # initial wavelength (in meters)
images = []
while wavelength < 770E-9:

laser.tune_wavelength_table(wavelength) # tune the laser frequency (using
→˓coarse tuning)

time.sleep(0.5) # wait until the laser stabilizes
cam.wait_for_frame() # ensure that there's a frame in the camera queue
frame = cam.read_newest_image()
images.append(frame)
wavelength += 0.5E-9

4.3 List of devices

Device Kind Module Comments
M Squared ICE BLOC Laser M2
Pure Photonics PPCL200 Laser PurePhotonics In CBDX1 chassis
Lighthouse Photonics SproutG Laser LighthousePhotonics
LaserQuantum Finesse laser Laser LaserQuantum
Agilent HP8168F Laser AgilentLasers
Nuphoton NP2000 EDFA NuPhoton
HighFinesse WS/6 and WS/7 Wavemeter HighFinesse
Andor Shamrock Spectrometer Andor Tested with Andor SR-303i
Andor SDK2 interface Camera Andor Tested with Andor IXON and Luca
Andor SDK3 interface Camera Andor Tested with Andor Zyla
Hamamatsu DCAM interface Camera DCAM Tested with ORCA-Flash 4.0 (C11440-22CU)
NI IMAQdx interface Camera IMAQdx Tested with Photon Focus HD1-D1312 with GigE connection
NI IMAQ interface Camera IMAQ Tested with NI PCI-1430 frame grabber
Photon Focus PFCam interface Camera PhotonFocus Tested with MV-D1024E and CameraLink connection with NI PCIe-1433 frame grabber (via IMAQ)
PCO SC2 interface Camera PCO_SC2 Tested with PCO.edge 5.5 CL and PCO.edge CLHS
Ophir Vega Optical power meter Ophir
Thorlabs PM100D Optical power meter Thorlabs
OZ Optics TF100 Tunable optical filter OZOptics
OZ Optics DD100 Variable optical attenuator OZOptics
OZ Optics EPC04 Polarization controller OZOptics
Agilent AWG33220A Arbitrary waveform generator AgilentElectronics
Agilent N9310A Microwave generator AgilentElectronics
Vaunix LMS (Lab Brick) Microwave generator Vaunix

Continued on next page

10 Chapter 4. Specific device classes

pyLabLib Documentation, Release 0.4.1

Table 1 – continued from previous page
Device Kind Module Comments
Thorlabs MDT693/4A High voltage source Thorlabs
Agilent AMP33502A DC amplifier AgilentElectronics
Rigol DSA1030A Microwave spectrum analyzer Rigol
Agilent HP8712B, HP8722D Vector network analyzers AgilentElectronics
Tektronix DPO2014, TDS2000, MDO3000 Oscilloscopes Tektronix
NI DAQ interface NI DAQ devices NI Wrapper around the nidaqmx package. Tested with NI USB-6008 and NI PCIe-6323
Zurich Instruments HF2 / UHF Lock-in amplifiers ZurichInstruments
Arcus PerforMax Translation stage Arcus Tested with PMX-4EX-SA stage.
SmarAct SCU3D Translation stage SmarAct
Attocube ANC300 Piezo slider controller Attocube Only tested with Ethernet or Serial connection
Attocube ANC350 Piezo slider controller Attocube Only tested with USB connection
Trinamic TMCM1110 Stepper motor controller Trinamic
Thorlabs KDC101 DC servo motor controller Thorlabs
Thorlabs K10CR1 Motorized rotation mount Thorlabs
Thorlabs FW102/202 Motorized filter wheel Thorlabs
Thorlabs MFF Motorized flip mount Thorlabs
Cryomagnetics LM500/510 Cryogenic level meter Cryomagnetics
Lakeshore 218 and 370 Temperature controllers Lakeshore
MKS 9xx Pressure gauge MKS
Pfeiffer TPG261 Pressure gauge Pfeiffer

All the modules are located in pylablib.aux_libs.devices.

4.4 Additional requirements

First, any device using PyVISA require NI VISA to be installed. See PyVISA for details.

Second, some devices need dlls supplied by the manufacturer:

• Andor SDK2 cameras: require atmcd.dll (currently supplied for x64 and x86). Can be obtained with Andor
Solis software, or Andor SDK. If Andor Solis is installed in the default location (C:/Program Files/Andor
Solis), these dlls are accessed automatically. It might be called atmcd64d_legacy.dll or atmcd32d_legacy.dll
(depending on the Solis version and Python bitness), but it needs to be renamed to atmcd.dll when placed into
aux_libs/devices/libs/x64 (or x32) folder.

• Andor SDK3 cameras: require several at*.dll: atcore.dll, atblkbx.dll, atcl_bitflow.dll, atdevapogee.dll, atdevreg-
cam.dll, atusb_libusb.dll, atusb_libusb10.dll (currently supplied only for x64). Has potential incompatibilities
between different versions of Windows; tested with Windows 7 x64 and Andor Solis 4.30.30034.0. Can be
obtained with Andor Solis software. If Andor Solis is installed in the default location (C:/Program Files/Andor
Solis), these dlls are accessed automatically.

• PCO SC2 cameras: require several SC2_*.dll: SC2_Cam.dll, sc2_cl_me4.dll, sc2_cl_mtx.dll, sc2_cl_nat.dll,
sc2_cl_ser.dll, sc2_clhs.dll. These are provided with pco.sdk, which can be obtained on PCO website.

• Arcus PerforMax translation stages: require PerformaxCom.dll and SiUSBXp.dll. Can be obtained from Arcus
website, either at USB 64-bit DLL (for 64-bit systems), or inside Python USB source (for 32-bit systems)

• HighFinesse WS/6 and WS/7 wavemeters: require wlmData.dll. Each device needs a unique dll supplied
by the manufacturer. One can either supply DLL path on creation of the device class, or place it into
aux_libs/devices/libs/x64 (or x32) folder; in the latter case, it should be renamed to wlmData6.dll or wlm-
Data7.dll depending on the wavemeter model (WS/6 or WS/7).

4.4. Additional requirements 11

https://nidaqmx-python.readthedocs.io/en/latest/
https://pyvisa.readthedocs.io/en/master/
https://www.pco.de/software/development-tools/pcosdk/
https://www.arcus-technology.com/support/downloads/download-category/sample-source-code/
https://www.arcus-technology.com/support/downloads/download-category/sample-source-code/
https://www.arcus-technology.com/support/downloads/download-info/usb-64-bit-dll/
https://www.arcus-technology.com/support/downloads/download-info/python-usb-source/

pyLabLib Documentation, Release 0.4.1

• SmarAct SCU3D translation stage controller: requires SCU3DControl.dll. Should be supplied with the device
by the manufacturer.

For the application to have access to them, they need to be placed into the package folder (correspondingly, into
aux_libs/devices/libs/ inside the main package folder, which is usually something like Python36/Lib/
site-packages/pylablib/).

Third, some devices need additional software installed:

• IMAQ cameras: National Instruments IMAQ library.

• IMAQdx cameras: National Instruments IMAQdx library.

• Photon Focus cameras: Photon Focus PFRemote software.

• Hamamatsu DCAM cameras: DCAM software (Hamamatsu HOKAWO) and drivers.

• Andor cameras: Andro Solis software and drivers

• NI DAQs: National Instruments NI-DAQmx library (with C support; just Runtime is sufficient).

• HighFinesse: manufacturer-provided drivers and software (specific to the particular wavemeter).

• Thorlabs Kinesis devices (KFF, KDC101, K10CR1): Kinesis/APT software.

• Trinamic hardware: Trinamic TMCL-IDE (needed to install device drivers)

• Arcus PerforMax software: Arcus Drivers and Tools, Arcus USB Series and Arcus Performax Series software
(needed to install device drivers).

• Zurich Instruments: manufacturer provided software and Python libraries.

The list might be incomplete, and it does not include drivers for all USB devices.

12 Chapter 4. Specific device classes

CHAPTER 5

Change log

This is a list of changes between each version.

5.1 0.4.2

Final version of library with updated links to repositories and documentation. No significant code change.

5.2 0.4.1

Interface changes

• Slightly changed representations of complex number in to-string conversions depending on the conversion rules
("python" vs "text").

Additions

• Devices

– Added Thorlabs K10CR1 rotational stage (devices.Thorlabs.K10CR1)

– Added Andor Shamrock spectrographs (devices.AndorShamrock)

– Expanded Agilent AWG class

– Added more 32bit dlls

– Added list_resources method to every backend class, which lists available connections for
this backend (not available for every backend; so far only works in VisaDeviceBackend,
SerialDeviceBackend, and FT232BackendOpenError.

• GUI and threading

– Added TableAccumulatorThread.preprocess_data() method to pre-process incoming data
before adding it to the table

13

pyLabLib Documentation, Release 0.4.1

– Added update_only_on_visible argument to TracePlotter.setupUi() method, and
TracePlotter.get_required_channels() method.

5.3 0.4.0

Interface changes

• Dictionary entries (core.fileio.dict_entry) system has been slightly redesigned: building entries from
stored objects has been moved from dict_entry.IDictionaryEntry.build_entry() class method
to a dedicated function dict_entry.build_entry(), and entry classes have been added.

• aux_libs.gui.helpers.StreamFormerThread architecture changes, so that it can accumu-
lates several rows before adding them into the storage; this lead to replacement of helpers.
StreamFormerThread.prepare_new_row() method by helpers.StreamFormerThread.
prepare_new_data().

Additions

• General

– Added pandas support in a bunch of places: loading/saving tables and dictionaries; data processing routines
in core.dataproc; conversion of DataTable and Dictionary object to/from pandas dataframes.

– Expanded string conversion to support more explicit variable classes. For example, a numpy array np.
array([1,2,3]) can be converted into a string 'array([1, 2, 3])' instead of a more am-
biguous string '[1, 2, 3]' (which can also be a list). This behavior is controlled by a new argu-
ment use_classes in string conversion functions (such as string.to_string() and string.
from_string()) and an argument use_rep_classes in file saving (savefile.save())

– Added general library parameters, which can be accessed via pylablib.par (works as a dictionary
object). So far there’s only one supported parameter: the default return type of the CSV file reading (can
be "pandas" for pandas dataframe, "table" for DataTable object, or "array" for raw numpy
array).

• Devices

– Added LaserQuantum Finesse device class (devices.LaserQuantum)

– NI DAQ now supports output of waveforms

– Added PCO_SC2.reset_api() and PCO_SC2.PCOSC2Camera.reboot() methods for resetting
API and cameras

– Added Thorlabs.list_kinesis_devices() function to list connected Kinesis devices

– Added serial communication methods for IMAQ cameras (IMAQ.IMAQCamera)

• GUI and threading

– Added line plotter (aux_libs.gui.widgets.line_plotter) and trace plotter (aux_libs.
gui.widgets.trace_plotter) widgets

– Added virtual elements to value tables and parameter tables

– Added gui_thread_safe parameter to value tables and parameter tables. Enabling it make most
common methods thread-safe (i.e., transparently called from the GUI thread)

– Added a corresponding controller.gui_thread_method() wrapper to implement the change
above

– Added functional thread variables (controller.QThreadController.
set_func_variable())

14 Chapter 5. Change log

pyLabLib Documentation, Release 0.4.1

• File saving / loading

– Added notation for dictionary files to include nested structures (‘prefix blocks’). This lets one avoid
common path prefix in stored dictionary files. For example, a file

some/long/prefix/x 1
some/long/prefix/y 2
some/long/prefix/y 3

can be represented as

//some/long/prefix
x 1
y 2
z 3

///

The meaningful elements are //some/long/prefix line denoting that following elements have the
given prefix, and /// line denoting that the prefix block is done (indentation is only added for clarity).

– New dictionary entries: dict_entry.ExternalNumpyDictionaryEntry (ex-
ternal numpy array, can have arbitrary number of dimensions) and dict_entry.
ExpandedContainerDictionaryEntry (turns lists, tuples and dicts into dictionary branches, so
that their content can benefit from the automatic table inlining, dictionary entry classes, etc.).

• Data processing

– fitting.Fitter now takes default scale and limit as constructor arguments.

– feature.multi_scale_peakdet() has new norm_ratio argument.

– image.get_region() and image.get_region_sum() take axis argument.

• Miscellaneous

– Functions introspection module now supports Python 3 - style functions, and added a new function
functions.funcsig()

– utils.general.StreamFileLogger supports multiple destination paths

– New network function utils.net.get_all_local_addr() (return list of all local addresses on
all interfaces) and utils.net.get_local_hostname()

5.3. 0.4.0 15

pyLabLib Documentation, Release 0.4.1

16 Chapter 5. Change log

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

	Installation
	Usage
	Requirements
	Installing from GitHub

	Data processing utilities
	Fitting

	Utilities
	Multi-level dictionary

	Specific device classes
	General concepts
	Examples
	List of devices
	Additional requirements

	Change log
	0.4.2
	0.4.1
	0.4.0

	Indices and tables

